Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains
نویسندگان
چکیده
منابع مشابه
Some unbounded functions of intermittent maps for which the central limit theorem holds
We compute some dependence coefficients for the stationary Markov chain whose transition kernel is the Perron-Frobenius operator of an expanding map T of [0, 1] with a neutral fixed point. We use these coefficients to prove a central limit theorem for the partial sums of f ◦ T , when f belongs to a large class of unbounded functions from [0, 1] to R. We also prove other limit theorems and momen...
متن کاملMixing Properties of Conditional Markov Chains with Unbounded Feature Functions
Conditional Markov Chains (also known as Linear-Chain Conditional Random Fields in the literature) are a versatile class of discriminative models for the distribution of a sequence of hidden states conditional on a sequence of observable variables. Large-sample properties of Conditional Markov Chains have been first studied in [1]. The paper extends this work in two directions: first, mixing pr...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملAn Almost Sure Invariance Principle for Additive Functionals of Markov Chains
We prove an invariance principle for a vector-valued additive functional of a Markov chain for almost every starting point with respect to an ergodic equilibrium distribution. The hypothesis is a moment bound on the resolvent.
متن کاملAn Almost Sure Invariance Principle for Additive Functionals of Markov Chains
In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2010
ISSN: 0246-0203
DOI: 10.1214/09-aihp343